Synergistic infection of two viruses MCMV and SCMV increases the accumulations of both MCMV and MCMV-derived siRNAs in maize
نویسندگان
چکیده
The co-infection of Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV) can cause maize lethal necrosis. However, the mechanism underlying the synergistic interaction between these two viruses remains elusive. In this study, we found that the co-infection of MCMV and SCMV increased the accumulation of MCMV. Moreover, the profiles of virus-derived siRNAs (vsiRNAs) from MCMV and SCMV in single- and co-infected maize plants were obtained by high-throughput sequencing. Our data showed that synergistic infection of MCMV and SCMV increased remarkably the accumulation of vsiRNAs from MCMV, which were mainly 22 and 21 nucleotides in length. The single-nucleotide resolution maps of vsiRNAs revealed that vsiRNAs were almost continuously but heterogeneously distributed throughout MCMV and SCMV genomic RNAs, respectively. Moreover, we predicted and annotated dozens of host transcript genes targeted by vsiRNAs. Our results also showed that maize DCLs and several AGOs RNAs were differentially accumulated in maize plants with different treatments (mock, single or double inoculations), which were associated with the accumulation of vsiRNAs. Our findings suggested possible roles of vsiRNAs in the synergistic interaction of MCMV and SCMV in maize plants.
منابع مشابه
Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize
Maize chlorotic mottle virus (MCMV) was first reported in maize in China in 2009. In this study we further analyzed the epidemiology of MCMV and corn lethal necrosis disease (CLND) in China. We determined that CLND observed in China was caused by co-infection of MCMV and sugarcane mosaic virus (SCMV). Phylogenetic analysis using four full-length MCMV cDNA sequences obtained in this study and th...
متن کاملDevelopment of a vaccine against murine cytomegalovirus (MCMV), consisting of plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication.
We previously demonstrated that immunization of mice with plasmid DNAs (pDNAs) expressing the murine cytomegalovirus (MCMV) genes IE1-pp89 and M84 provided synergistic protection against sublethal viral challenge, while immunization with plasmids expressing putative virion proteins provided no or inconsistent protection. In this report, we sought to augment protection by increasing the breadth ...
متن کاملNK Cell–Like Behavior of Vα14i NK T Cells during MCMV Infection
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become act...
متن کاملIn silico MCMV Silencing Concludes Potential Host-Derived miRNAs in Maize
Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins: P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat pr...
متن کاملLaboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus.
Murine cytomegalovirus (MCMV) is widely used to model human cytomegalovirus (HCMV) infection. However, it is known that serially passaged laboratory strains of HCMV differ significantly from recently isolated clinical strains of HCMV. It is therefore axiomatic that clinical models of HCMV using serially passaged strains of MCMV may not be able to fully represent the complexities of the system t...
متن کامل